Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 13869-13881, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466181

RESUMO

Poly(ethylene glycol) methyl ether methacrylate polymer networks (PEO-based networks), with or without anionic bis(trifluoromethanesulfonyl)imide (TFSI)-grafted groups, are promising electrolytes for Li-metal all solid-state batteries. Nevertheless, there is a need to enhance our current understanding of the physicochemical characteristics of these polymer networks to meet the mechanical and ionic conductivity property requirements for Li battery electrolyte materials. To address this challenge, our goal is to investigate the impact of the cross-linking density of the PEO-based network and the ethylene oxide/lithium ratio on mechanical properties (such as glass transition temperature and storage modulus) and ionic conductivity. We have synthesized a series of cross-linked PEO-based polymers (si-SPE for single ion solid polymer electrolyte) via solvent-free radical copolymerization. These polymers are synthesized by using commercially available lithium 3-[(trifluoromethane)sulfonamidosulfonyl]propyl methacrylate (LiMTFSI), poly(ethylene glycol)methyl ether methacrylate (PEGM), and [poly(ethylene glycol) dimethacrylate] (PEGDM). In addition, we have synthesized a series of cross-linked PEO-based polymers (SPE for solid polymer electrolyte) using LiTFSI as the ionic species. Most of the resulting polymer films are amorphous, self-standing, flexible, homogeneous, and thermally stable. Interestingly, our research has revealed a correlation between ionic conductivity and mechanical properties in both the SPE and si-SPE series. Ionic conductivity increases as glass transition temperature, α relaxation temperature, and storage modulus decrease, suggesting that Li+ transport is influenced by polymer chain flexibility and Li+/EO interaction.

2.
Soft Matter ; 17(48): 10786-10805, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34859250

RESUMO

Electroactive polymers based on dielectric elastomers are stretchable and compressible capacitors that can act as transducers between electrical and mechanical energies. Depending on the targeted application, soft actuators, sensors or mechanical-energy harvesters can be developed. Compared with conventional technologies, they present a promising combination of properties such as being soft, silent, light and miniaturizable. Most of the research on dielectric elastomer actuators has focused on obtaining the highest strain, either from technological solutions using commercially available materials or through the development of new materials. It is commonly accepted that a high electrical breakdown field, a low Young's modulus and a high dielectric constant are targets. However, the interdependency of these properties makes the evaluation and comparison of these materials complex. In addition, dielectric elastomers can suffer from electromechanical instability, which amplifies their complexity. The scope of this review is to tackle these difficulties. Thus, first, two physical parameters are introduced, one related to the energy converted by the dielectric elastomer and another to its electromechanical stability. These numbers are then used to compare dielectric elastomers according to a general and rational methodology considering their physicochemical and electromechanical properties. Based on this methodology, different families of commercially available dielectric elastomers are first analyzed. Then, different polymer modification methods are presented, and the resulting modified elastomers are screened. Finally, we conclude on the trends enabling the choice of the most suitable modification procedure to obtain the desired elastomer. From this review work, we would like to contribute to affording a quick identification method, including a graphic representation, to evaluate and develop the dielectric materials that are suitable for a desired actuator.

3.
Langmuir ; 37(38): 11406-11413, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528811

RESUMO

In the present study, we investigated the effect of permodified 2,3,6-tri-O-trimethylsilyl ß- and γ-cyclodextrin (TMS·ß-CD, TMS·Î³-CD) encapsulation on the optical, electrochemical, morphological, and supramolecular arrangements of a poly[2,7'-(9,9-dioctylfluorene-alt-2',7-fluorene)] PF copolymer. For this purpose, the photophysical properties and Langmuir monolayer formation of PF·TMS·ß-CD and PF·TMS·Î³-CD polyrotaxanes were investigated and compared with those of the reference PF. Surface pressure-area isotherms and Brewster angle microscopy studies indicated the capability of both polyrotaxanes to organize into larger and homogeneous 2D supramolecular assemblies at the air-water interface. The obtained results suggest that the presence of the surrounding TMS·ß-CD and TMS·Î³-CD macrocycles on the PF backbones leads to changes in the conformation and hydrophobicity of the film surfaces. Our investigation offers a method to assess the impact of TMS-CD encapsulation on the control of 2D monolayer formation, with particular attention on the generation of stable PF monolayers for organic electronic devices.


Assuntos
Ciclodextrinas , Rotaxanos , Microscopia , Propriedades de Superfície , Água
4.
Nanomaterials (Basel) ; 7(12)2017 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29232876

RESUMO

Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

5.
Langmuir ; 32(39): 10104-10112, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27610481

RESUMO

The nanostructure of a microemulsion can be strongly affected by the liquid-to-solid transition during polymerization. Here, we examined the evolution of nanostructures of different ternary mixtures, including two microemulsions and a single lamellar phase that upon polymerization are quantitatively studied by SAXS/WAXS and DSC experiments systematically performed before and after the polymerization of both aqueous and organic phases. Samples are mixtures of the poly(2-acrylamido-2-methylpropanesulfonic acid) network as the aqueous phase and poly(hexyl methacrylate) as the organic phase stabilized by Brij35 surfactant. Upon polymerization, the surfactant is excluded from the water/oil interface and crystallizes, strongly changing the nanostructure of samples where it is the main component. In samples where the aqueous phase is the main component, only a few changes in structure are observed upon polymerization. This study demonstrates quantitatively the possibility to preserve nanostructures during polymerization, thus inducing a templating effect.

6.
Biomacromolecules ; 14(11): 3870-9, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24050436

RESUMO

A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.


Assuntos
Materiais Biocompatíveis/química , Fibrina/química , Álcool de Polivinil/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/metabolismo , Humanos , Hidrólise , Masculino , Tamanho da Partícula , Álcool de Polivinil/metabolismo , Álcool de Polivinil/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Trombina/metabolismo , Água/química , Água/metabolismo
7.
Langmuir ; 29(30): 9499-509, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23805895

RESUMO

The wetting properties of spin-coated films of copolymers based on azobenzene and fluorinated units have been investigated. The copolymers, denoted as poly(Azo-co-AcRf6), have been synthesized by free-radical polymerization of different proportions of acrylate monomers bearing either an azobenzene group or a semifluorinated side chain. The UV-visible spectroscopy analysis of the different spin-coating films through a cycle of UV and visible light irradiation indicates the reversible trans-cis isomerization of azobenzene groups. Simultaneously, atomic force microscopy shows that surface roughness does not exceed 1 nm. Advancing and receding contact angles of water and diiodomethane have been measured before and after UV photoirradiation of the different surfaces. In particular, a decrease in the advancing contact angles has been observed upon trans-cis isomerization of azobenzene groups. Switching variations up to 50° have been evidenced without any introduction of surface nanoroughness. Surface free-energy evaluations have been deduced from these measurements, including dispersive and polar components. The results show that, through surface composition and UV photoirradiation, a large range of surface free-energies can be obtained, from 7 to 46 mN·m(-1).

8.
J Phys Chem B ; 116(20): 6041-9, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22554034

RESUMO

Monolayers of a cellulosic polymer bearing cinnamate groups were characterized at the air-water interface by combining isotherm measurements, Brewster angle microscopy, and infrared-visible sum-frequency generation (SFG) spectroscopy. This spectroscopic technique was used to detect the photochemical behavior of the cinnamate groups upon UV photoirradiation of the monolayers. From the disappearance of the C═C mode and the absence of a change in the C═O mode, it could be concluded that isomerization is the dominant photoreaction for a monolayer of this polymer. This conclusion was corroborated by a comparison of the spectra of the monolayer after irradiation with spectra measured for monolayers spread from preirradiated solutions, for which it is known that isomerization is the main process.

9.
Langmuir ; 26(22): 17427-34, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20919692

RESUMO

The large application ranges of polydimethylsiloxane (PDMS) and poly(ethylene oxide) (PEO) based materials justify the importance of controlling polymer surface properties including morphology and wettability behavior. However, it appears that the reported contact angle values of PDMS surfaces show significant scattering which cannot always be interpreted in terms of sole chemical data. In addition, few values are reported concerning pure PEO surfaces, since the polymer generally swells in the presence of water. Thus, in order to correlate surface properties with sample preparation, several single PDMS and PEO polymer networks were synthesized with varying cross-linkers and different cross-linking densities. First, the sample surface topography was systematically analyzed by atomic force microscopy (AFM). It was proven that the removal process of the polymer film from the mold plays a significant role in surface topography according to the vitreous or rubbery state of the given polymer network at room temperature irrespective of mold surface treatment. AFM-scale smooth surfaces can be obtained for all the samples by removing them systematically from the mold at a temperature below the α-relaxation temperature. Dynamic water contact angles were then measured and the values analyzed as a function of cross-linker nature and cross-linking density.


Assuntos
Dimetilpolisiloxanos/química , Polietilenoglicóis/química , Fenômenos Mecânicos , Microscopia de Força Atômica , Propriedades de Superfície , Temperatura , Molhabilidade
10.
Langmuir ; 23(24): 12243-8, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17949021

RESUMO

When a dioctadecyldimethylammonium bromide (DODA) monolayer is spread onto a styrene sulfonate (SSt) aqueous solution, this monomer undergoes a spontaneous polymerization process [Fichet, O; Teyssié, D. Macromolecules 2002, 35, 5352]. However, the polymer synthesized in this monolayer cannot be investigated by classical characterization techniques. Brewster angle microscopy has thus been used as a complementary method in order to study this spontaneous polymerization. From these measurements, the threshold concentration above which the spontaneous polymerization occurs has been determined more precisely; the monomer adsorption under the DODA monolayer has been evidenced as being very fast, as supposed previously; moreover, sodium bicarbonate is confirmed as an inhibitor of the polymerization. Also, the replacement of SSt by toluene sulfonate (TSt) confirms the SSt spontaneous polymerization. Finally, the molecular weight and/or the structure of the polymer synthesized in the monolayer seems to be different from those synthesized in solution.

11.
J Colloid Interface Sci ; 306(1): 82-8, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17097101

RESUMO

The study of interactions between a polyelectrolyte (sodium polystyrene sulfonate, PSSt) or its water-soluble monomer (SSt) at different concentrations and a monolayer of dioctadecyldimethylammonium bromide (DODA) has been investigated. The monolayer phase behavior and structure at the air-water interface were studied by surface pressure-area isotherms and grazing incidence X-ray diffraction measurements. DODA molecules organize following a rectangular unit cell in all three subphases (pure water, water containing SSt or PSSt). The presence of polyelectrolytes in the subphase decreases, on one hand, the tilt angle and the mean area per molecule in the condensed phase, revealing a higher 2D density in this state, and, on the other hand, the amount of organized matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...